Install CUDA 10.1 without APT repository on Linux Mint 19.3
by Ugnius MalūkasThese days many people use NVIDIA graphic cards for increasing speed of computing time, for example, calculating outcomes of Machine Learning algorithms. In order to use a graphic processing of Nvidia GPUs, CUDA has to be installed. This article shows how to install CUDA, cuDNN and TensorRT packages without having a Nvidia APT repository.
Installation
Be sure that you have already installed Nvidia GPU drivers. My recommendation is to install it trough Driver Manager.
1) Download CUDA 10.1:
$ wget https://developer.nvidia.com/compute/cuda/10.1/Prod/local_installers/cuda_10.1.105_418.39_linux.run
2) Run cuda_10.1.105_418.39_linux.run
:
$ sudo sh cuda_10.1.105_418.39_linux.run
Screen picture:
3) After installation you need open /etc/environment
:
$ sudo nano /etc/environment
Append PATH
in /etc/environment
file with a following line:
:/usr/local/cuda-10.1/bin:/usr/local/cuda-10.1/NsightCompute-2019.1
4) Depending on your machine (64-bit or 32-bit) append LD_LIBRARY_PATH
(or add if does not exist) in /etc/environment
:
64-bit:
:/usr/local/cuda-10.1/lib64
32-bit:
:/usr/local/cuda-10.1/lib
5) After 3rd and 4th step your /etc/environment
file should look like this:
6) Restart the computer:
$ sudo reboot
Validate CUDA Installation
Go to ~/NVIDIA_CUDA-10.1_Samples/
:
$ cd ~/NVIDIA_CUDA-10.1_Samples/
Run:
$ sudo make
Then go to ~/NVIDIA_CUDA-10.1_Samples/0_Simple/asyncAPI
and run asyncAPI
:
cd ~/NVIDIA_CUDA-10.1_Samples/0_Simple/asyncAPI
./asyncAPI
If there are no errors and just warnings, installation is complete.
Install cuDNN
Go to https://developer.nvidia.com/rdp/cudnn-download.
Press Download cuDNN v7.6.Y, for CUDA 10.1.
Then press to download these selections: * cuDNN Runtime Library for Ubuntu18.04 (Deb), * cuDNN Developer Library for Ubuntu18.04 (Deb), * cuDNN Code Samples and User Guide for Ubuntu18.04 (Deb).
Install downloaded files:
sudo dpkg -i libcudnn7_7.6.Y.Z-1+cuda10.1_amd64.deb
sudo dpkg -i libcudnn7-dev_7.6.Y.Z-1+cuda10.1_amd64.deb
sudo dpkg -i libcudnn7-doc_7.6.Y.Z-1+cuda10.1_amd64.deb
Verify Installation:
Copy cuDNN samples:
$cp -r /usr/src/cudnn_samples_v7/ ~
Go to mnistCUDNN
folder:
$ cd ~/cudnn_samples_v7/mnistCUDNN
Compile and run:
$ make clean && make
./mnistCUDNN
If you see Test passed! at the end of the output then installation is complete.
(Optional) Install Nvidia Libraries Required by TensorFlow
If you are planning to install TensorFlow (2.1.0+), TensorRT is needed to use that library.
1) Download and install libnvinfer6
:
$ wget https://developer.download.nvidia.cn/compute/machine-learning/repos/ubuntu1804/x86_64/libnvinfer6_6.0.1-1+cuda10.1_amd64.deb
sudo dpkg -i --ignore-depends=libcublas10,cuda-cudart-10-1 libnvinfer6_6.0.1-1+cuda10.1_amd64.deb
2) Download and install libnvinfer-dev
:
$ wget https://developer.download.nvidia.cn/compute/machine-learning/repos/ubuntu1804/x86_64/libnvinfer-dev_6.0.1-1+cuda10.1_amd64.deb
$ sudo dpkg -i --ignore-depends=libcublas-dev,cuda-cudart-dev-10-1 libnvinfer-dev_6.0.1-1+cuda10.1_amd64.deb
3) Download and install libnvinfer-plugin
:
$ wget https://developer.download.nvidia.cn/compute/machine-learning/repos/ubuntu1804/x86_64/libnvinfer-plugin6_6.0.1-1+cuda10.1_amd64.deb
$ sudo dpkg -i libnvinfer-plugin6_6.0.1-1+cuda10.1_amd64.deb
Conclusion
If there is a possibility of having an APT repository, I recommend installing CUDA, cuDNN and TensorRT libraries via APT because many of the above mentioned steps would not be needed and would require less effort.